CSCI 210: Computer Architecture Lecture 12: Procedures

Stephen Checkoway Oberlin College Mar. 16, 2022 Slides from Cynthia Taylor

Announcements

- No class or office hours on Friday
- Problem Set 3 due Friday
- Problem Set 1 resubmit available _soon_
 - Due a week from when it's available
 - 25% of your grade comes from the original submission, 75% comes from the resubmission
- Lab 2 due Sunday
 - Make sure it runs on occs

Jump and Link

- jal Label
- Address of following instruction put in \$ra
- Jumps to target address
- Used for procedure calls

Procedure Call Instructions

- Procedure call: jump and link
 - jal ProcedureLabel
 - Address of following instruction put in \$ra
 - Jumps to target address
- Procedure return: jump register

jr \$ra

- Copies \$ra to program counter

Recall: Procedures

int addTimes3(int x, int y){

int w = y * 3; int z = x + w; return z;

}

Procedure Calling

- 1. Place arguments in registers: \$a0, \$a1, \$a2, \$a3
- 2. Transfer control to procedure: jal label
- 3. Acquire storage for procedure: use the stack
- 4. Perform procedure's operations
- 5. Place result in register for caller: \$v0, \$v1
- 6. Return to place of call: jr \$ra

What does a procedure call look like?

•••

- move \$a0, \$s2
- jal addTen
- # Now v0 holds the value of \$s2 + 10

•••

addten:

addi \$v0, \$a0, 10 jr \$ra

What is the problem with this code

move \$a0, \$t2
move \$a1, \$t3
jal add
move \$t4, \$v0
sub \$t4, \$t4, \$t2

```
#add $a0,$a1
add: add $t2, $a0, $a1
move $v0, $t2
jr $ra
```

A. Not adding correctly

D. There is nothing wrong with this code

- B. \$t2 is overwritten in add
- C. We are not saving the return address before the procedure

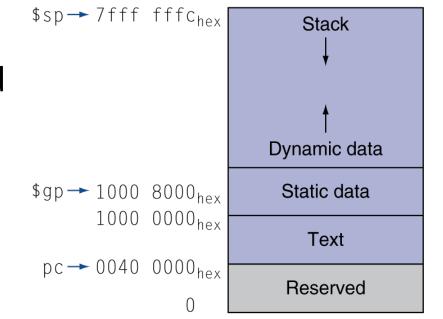
Register values across function calls

- "Preserved" registers
 - You can trust them to persist past function calls
 - Functions must ensure not to change them or to restore them if they do

- Not "Preserved" registers
 - Contents can be changed when you call a function
 - If you need the value, you need to put it somewhere else

Aside: MIPS Register Convention

Name	Register Number	Usage	Preserve on call?	Program respons
\$zero	0	constant 0 (hardware)	n.a.	
\$at	1	reserved for assembler	n.a.	
\$v0 - \$v1	2-3	returned values	no	
\$a0 - \$a3	4-7	arguments	no	
\$t0 - \$t7	8-15	temporaries	no	
\$s0 - \$s7	16-23	saved values	yes	
\$t8 - \$t9	24-25	temporaries	no	
\$gp	28	global pointer	yes	
\$sp	29	stack pointer	yes	
\$fp	30	frame pointer	yes	
\$ra	31	return addr (hardware)	yes	


Programmer's responsibility

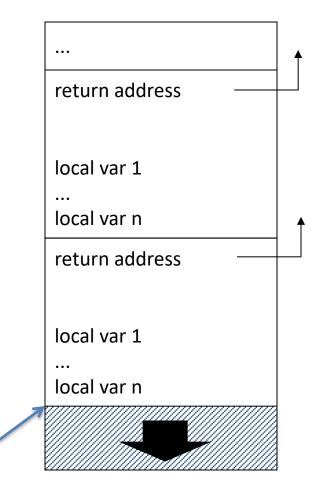
"Spill" and "Fill"

- Spill register to memory
 - Whenever you have too many variables to keep in registers
 - Whenever you call a method and need values in non-preserved registers
 - Whenever you want to use a preserved register and need to keep a copy
- Fill registers from memory
 - To restore previously spilled registers

Memory Layout

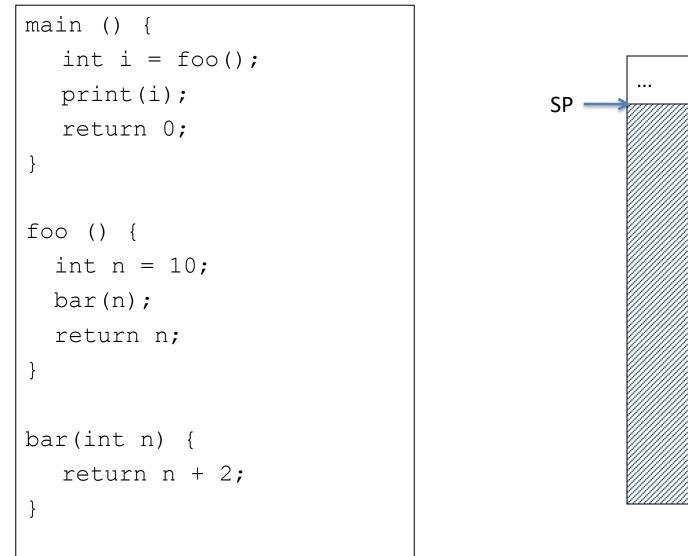
- Text: program code
- Static data: global variables
 - e.g., static variables in C, constant arrays and strings
 - \$gp initialized to address allowing ±offsets into this segment
- Dynamic data: heap
 - E.g., malloc in C, new in Java
- Stack: "automatic" storage for procedures

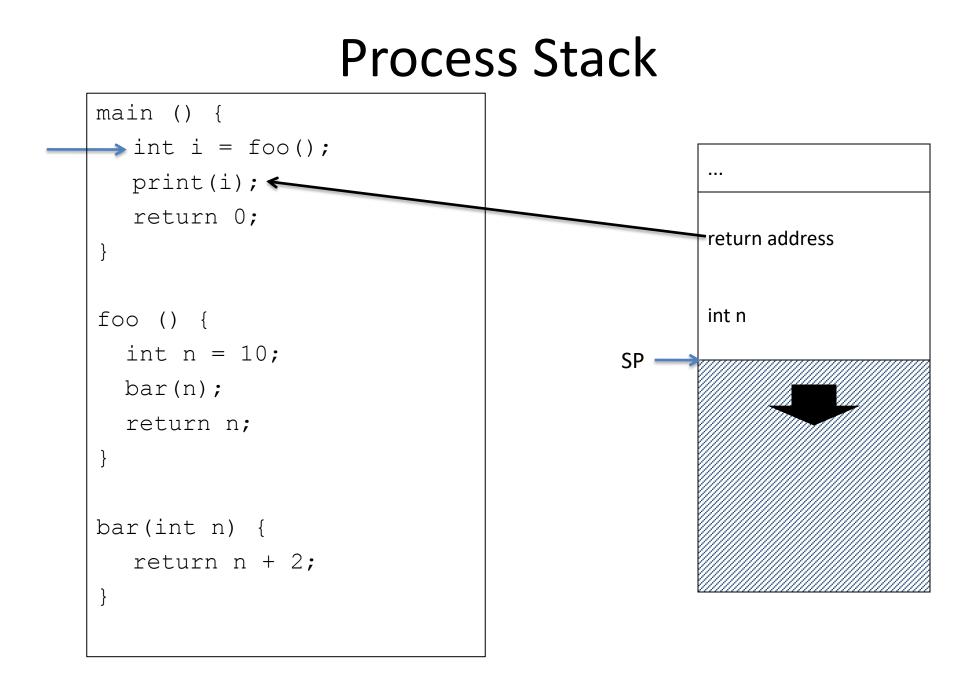
Before and after a function

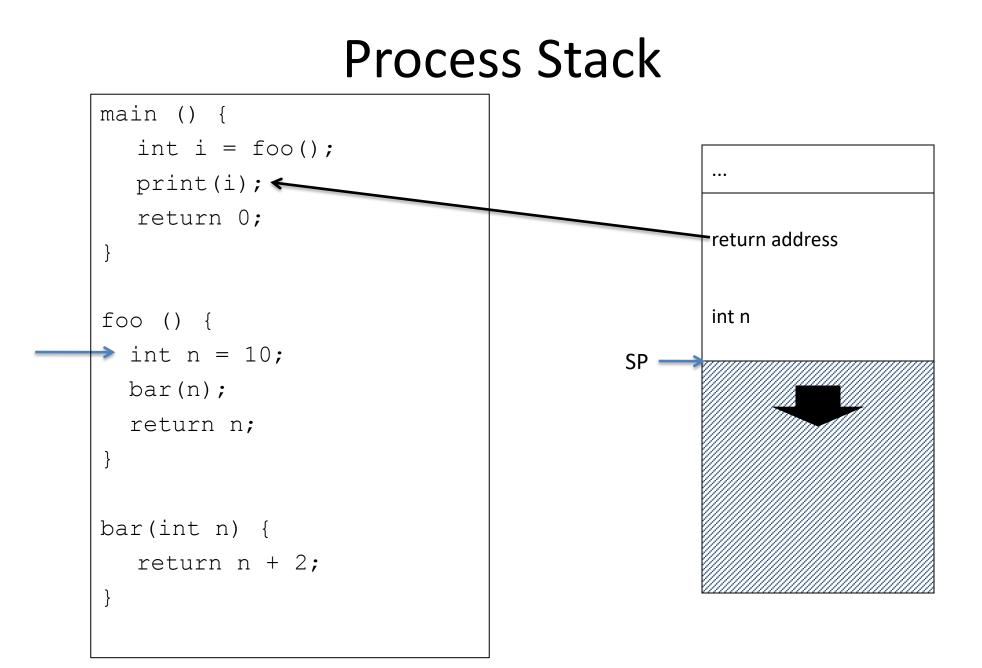

Assembly Code

SW	\$t0, 0(\$sp)
jal	myFunction
lw	\$t0, 0(\$sp)

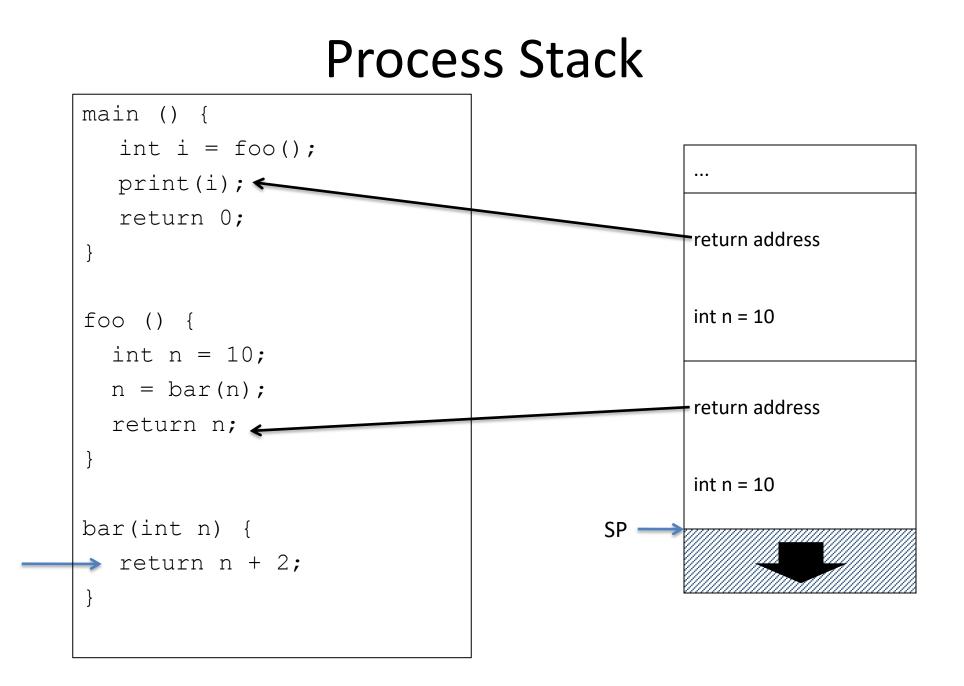
Which register is being spilled and filled? A. \$ra B. \$t0 C. \$sp D. No register is spilled/filled E. No need to spill/fill any registers

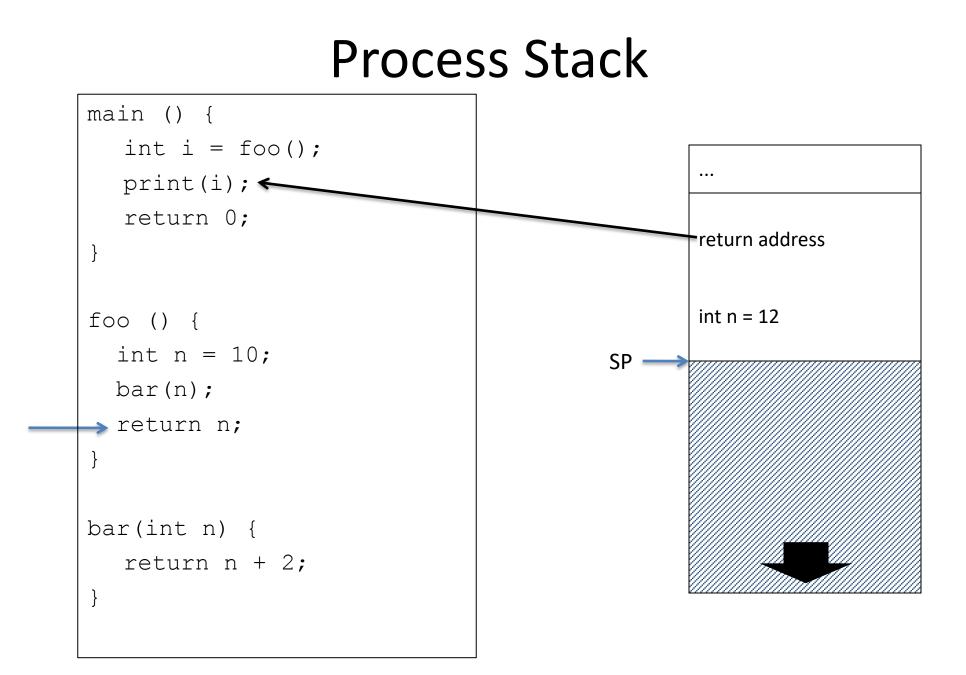

Stack

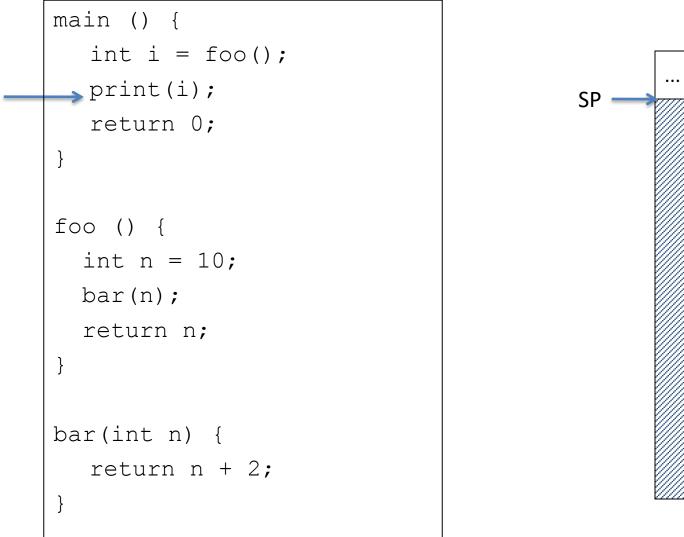

- Stack of stack frames
 - One per pending procedure
- Each stack frame stores
 - Where to return to
 - Local variables
 - Arguments for called functions (if needed)
- Stack pointer points to last record

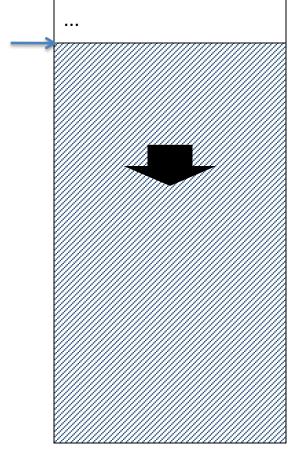


SP


Process Stack







Process Stack

To add a variable to the stack in MIPS

• Change the stack pointer \$sp to create room on the stack for the variable

• Use sw to store the variable on the stack

Stack

If you wish to push an integer variable to the top of the stack, which of the following is true:

- A. You should decrement the stack pointer (\$sp) by 1
- B. You should decrement \$sp by 4
- C. You should increment \$sp by 1
- D. You should increment \$sp by 4
- E. None of the above

- To add the contents of \$s0 to the stack
 - addi \$sp, \$sp, -4 sw \$s0, 0(\$sp)
- To get the value back from the stack
 - -lw \$s0, 0(\$sp)
- To "erase" the value from the stack
 - addi \$sp, \$sp, 4

Spill and fill the return address; why?

addi	\$sp,	\$sp, -4
SW	\$ra,	0(\$sp)
jal	myFur	nction
lw	\$ra,	0(\$sp)
addi	\$sp,	\$sp, 4

A better approach

• In the function "prologue," reserve space on the stack for all of the variables and saved registers you'll need

 Use sw/lw to spill and fill as needed to the space reserved in the prologue

 In the function "epilogue," restore any saved registers you need and update the stack pointer

Complete example

foo:

addi sw sw	\$sp, \$sp, -12 \$ra, 8(\$sp) \$s0, 4(\$sp)	# Reserve space for 3 vars # Stores (spills) \$ra, return address # Stores (spills) s0, callee-saved reg
… li sw add	\$s0, 25 \$t3, 0(\$sp) \$a0, \$t1, \$t3 myFunction	# Set s0 to 25 # Stores (spills) t3, caller-saved reg
jal lw	\$t3, 0(\$sp)	# Restores (fills) t3
… lw lw addi jr	\$s0, 4(\$sp) \$ra, 8(\$sp) \$sp, \$sp, 12 \$ra	<pre># Restores (fills) s0, must restore # Restores (fills) \$ra, return address # Restore the stack pointer # Return</pre>

Leaf function

- If the function doesn't call any other functions, it's a "leaf"
- If a leaf function doesn't need to use any of the callee-saved registers (e.g., \$s0-\$s7), then it doesn't need to change the stack pointer or spill/fill \$ra
- Example:

myFunction(int a0, int a1, int a2)
myFunction:

add	\$t0,	\$a0,	\$a2
sub	\$v0,	\$t0,	\$a1
jr	\$ra		

Reading

- Next lecture: More stack!
- Problem Set 3 due Friday

• Lab 2 due Sunday