
CSCI 210: Computer Architecture

Lecture 12: Procedures

Stephen Checkoway

Oberlin College

Mar. 16, 2022

Slides from Cynthia Taylor

1

Announcements

• No class or office hours on Friday

• Problem Set 3 due Friday

• Problem Set 1 resubmit available _soon_

– Due a week from when it’s available

– 25% of your grade comes from the original submission, 75% comes from the
resubmission

• Lab 2 due Sunday

– Make sure it runs on occs

Jump and Link

jal Label

– Address of following instruction put in $ra

– Jumps to target address

– Used for procedure calls

Procedure Call Instructions

• Procedure call: jump and link

jal ProcedureLabel

– Address of following instruction put in $ra

– Jumps to target address

• Procedure return: jump register

jr $ra

– Copies $ra to program counter

Recall: Procedures

int addTimes3(int x, int y){

int w = y * 3;

int z = x + w;

return z;

}

Procedure Calling

1. Place arguments in registers: $a0, $a1, $a2, $a3

2. Transfer control to procedure: jal label

3. Acquire storage for procedure: use the stack

4. Perform procedure’s operations

5. Place result in register for caller: $v0, $v1

6. Return to place of call: jr $ra

What does a procedure call look like?

…

move $a0, $s2

jal addTen

Now v0 holds the value of $s2 + 10

…

addten:

addi $v0, $a0, 10

jr $ra

What is the problem with this code

move $a0, $t2

move $a1, $t3

jal add

move $t4, $v0

sub $t4, $t4, $t2

#add $a0,$a1

add: add $t2, $a0, $a1

move $v0, $t2

jr $ra

A. Not adding correctly

B. $t2 is overwritten in add

C. We are not saving the return

address before the procedure

D.There is nothing wrong with this

code

Register values across function calls

• “Preserved” registers

– You can trust them to persist past function calls

• Functions must ensure not to change them or to restore them if they do

• Not “Preserved” registers

– Contents can be changed when you call a function

• If you need the value, you need to put it somewhere else

Aside: MIPS Register Convention

Name Register
Number

Usage Preserve
on call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments no

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values yes

$t8 - $t9 24-25 temporaries no

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return addr (hardware) yes

Programmer’s

responsibility

“Spill” and “Fill”

• Spill register to memory

– Whenever you have too many variables to keep in registers

– Whenever you call a method and need values in non-preserved
registers

– Whenever you want to use a preserved register and need to keep a
copy

• Fill registers from memory

– To restore previously spilled registers

Memory Layout

• Text: program code

• Static data: global variables

– e.g., static variables in C, constant arrays and
strings

– $gp initialized to address allowing ±offsets
into this segment

• Dynamic data: heap

– E.g., malloc in C, new in Java

• Stack: “automatic” storage for procedures

Before and after a function

sw $t0, 0($sp)

jal myFunction

lw $t0, 0($sp)

14

Assembly Code

Which register is being

spilled and filled?

A. $ra

B. $t0

C. $sp

D. No register is

spilled/filled

E. No need to spill/fill any

registers

Stack

• Stack of stack frames

– One per pending procedure

• Each stack frame stores

– Where to return to

– Local variables

– Arguments for called functions (if needed)

• Stack pointer points to last record

return address

local var 1

...

local var n

return address

local var 1

...

local var n

...

SP

Process Stack

...

main () {

int i = foo();

print(i);

return 0;

}

foo () {

int n = 10;

bar(n);

return n;

}

bar(int n) {

return n + 2;

}

SP

Process Stack

...

return address

int n

main () {

int i = foo();

print(i);

return 0;

}

foo () {

int n = 10;

bar(n);

return n;

}

bar(int n) {

return n + 2;

}

SP

Process Stack

18

...

return address

int n

main () {

int i = foo();

print(i);

return 0;

}

foo () {

int n = 10;

bar(n);

return n;

}

bar(int n) {

return n + 2;

}

SP

Process Stack

...

return address

int n = 10

return address

int n

main () {

int i = foo();

print(i);

return 0;

}

foo () {

int n = 10;

bar(n);

return n;

}

bar(int n) {

return n + 2;

}

SP

Process Stack

...

return address

int n = 10

return address

int n = 10

main () {

int i = foo();

print(i);

return 0;

}

foo () {

int n = 10;

n = bar(n);

return n;

}

bar(int n) {

return n + 2;

}

SP

Process Stack

...

return address

int n = 12

main () {

int i = foo();

print(i);

return 0;

}

foo () {

int n = 10;

bar(n);

return n;

}

bar(int n) {

return n + 2;

}

SP

Process Stack

22

...

main () {

int i = foo();

print(i);

return 0;

}

foo () {

int n = 10;

bar(n);

return n;

}

bar(int n) {

return n + 2;

}

SP

To add a variable to the stack in MIPS

• Change the stack pointer $sp to create room on the stack for

the variable

• Use sw to store the variable on the stack

Stack

If you wish to push an integer variable to the top of the stack, which of the
following is true:

A. You should decrement the stack pointer ($sp) by 1

B. You should decrement $sp by 4

C. You should increment $sp by 1

D. You should increment $sp by 4

E. None of the above

• To add the contents of $s0 to the stack

– addi $sp, $sp, -4
sw $s0, 0($sp)

• To get the value back from the stack

– lw $s0, 0($sp)

• To “erase” the value from the stack

– addi $sp, $sp, 4

Spill and fill the return address; why?

addi $sp, $sp, -4

sw $ra, 0($sp)

jal myFunction

lw $ra, 0($sp)

addi $sp, $sp, 4

A better approach

• In the function “prologue,” reserve space on the stack for all of

the variables and saved registers you’ll need

• Use sw/lw to spill and fill as needed to the space reserved in

the prologue

• In the function “epilogue,” restore any saved registers you

need and update the stack pointer

Complete example

foo:

addi $sp, $sp, -12 # Reserve space for 3 vars

sw $ra, 8($sp) # Stores (spills) $ra, return address

sw $s0, 4($sp) # Stores (spills) s0, callee-saved reg

…

li $s0, 25 # Set s0 to 25

sw $t3, 0($sp) # Stores (spills) t3, caller-saved reg

add $a0, $t1, $t3

jal myFunction

lw $t3, 0($sp) # Restores (fills) t3

…

lw $s0, 4($sp) # Restores (fills) s0, must restore

lw $ra, 8($sp) # Restores (fills) $ra, return address

addi $sp, $sp, 12 # Restore the stack pointer

jr $ra # Return

Leaf function

• If the function doesn’t call any other functions, it’s a “leaf”

• If a leaf function doesn’t need to use any of the callee-saved
registers (e.g., $s0–$s7), then it doesn’t need to change the stack
pointer or spill/fill $ra

• Example:
myFunction(int a0, int a1, int a2)
myFunction:

add $t0, $a0, $a2
sub $v0, $t0, $a1
jr $ra

Reading

• Next lecture: More stack!

• Problem Set 3 due Friday

• Lab 2 due Sunday

42

